

How to plan lessons effectively using the 5 big ideas

Boolean Conference 2019 Ella Keddie ella.keddie@colstonsgirls.org

How do you currently do it?

Debbie Morgan

How we can plan effectively:

Features of Mastery

<u>S-Planning:</u> Incorporating well structured and thought through learning objectives and outcomes.

		,			
Curricu	ılum design	Longer units of work, prioritising key topics			
Lessor	n design	Carefully structured lesson to develop the detail and depth	>		
Looking at the 5	Big	Quick intervention			
Ideas to generat depth of learnin within the class	e <i>ces</i> g room.	Carefully chosen examples and activities. Application of variation theory. Effective use of representations			
Teaching methods differentiation Productivity and practice		Keeping the class together and aiming for depth			
		Intelligent practice 4			

Productivity and practice

Debbie Morgan

4

Curriculum Design (S-Planning)

Shallow Learning	Surface learning,Temporary, often lost
Meeting	 With support being able to meet the objectives
Expectations	outlined in the National Curriculum
Mastery	 Obtaining greater level of understanding and being able to apply learning in different context
Working at	Learning be transferred and applied in different contexts
Greater Depth	Pupils can explain their understanding to others

The 5 big ideas

https://www.ncetm.org.uk/resourc es/50042

What areas are you prioritising in schools?

Year 7 Only

Number and Place Value Addition and Subtraction Multiplication and Division Fractions and ratio Measurement

Geometry

Statistics

Algebra

What about you and your schools?

<u>S-plan</u>: Identifying the connections between lessons in a topic area.

Your S-Plan: Learning Journey

(Topic Plan)

Planning

- Spend longer time on topics
- Prioritise key topics
- Focus on relationships
- Make Connections
- Ensure intelligent practice

<u>The Key:</u>

Lesson Planning & Resources available

Big Idea: Variation

Key Messages:

- 1. The central idea of teaching with variation is to highlight the essential features of a concept or idea through varying the non-essential features.
- 2. Variation is not the same as variety careful attention needs to be paid to what aspects are being varied (and what is not being varied) and for what purpose.
- 3. When giving examples of a mathematical concept, it is useful to add variation to emphasise:
 - a. What it is (both standard and non-standard examples);
 - b. What it is not.
- 4. When constructing a set of activities or questions it is important to consider what connects the examples; what mathematical structures are being highlighted? Students are encouraged to avoid mechanical practice and, instead, to practice the thinking process (intelligent practice)

Variation

- Procedural
- Conceptual
- Making Connections

Variation in Greater Depth

Purpose of Variation

Develop deep learning rather than superficial learning

Provide the necessary repetition to embed and sustain learning

Make connections between concepts

Conceptual Variation:

Drawing attention to what is to be learnt – the object of the learning, the essence of the concept.

Leading to generalisation

Procedural Variation

Provides the opportunity

- for practice (intelligent rather than mechanical);
- to focus on relationships, not just the procedure;
- to make connections between problems;
- to use one problem to work out the next;
- to create other examples of their own.

Variation to create depth: it's the subtle changes....

Write a mathematical sentence story for 97 + 65 =	85.021 + 45.10 = 97.5 + 24.95 = 69ml + 51ml = 7 l			One hundred thousand add fifty seven = ?		Emm differe coins	Emma has 5 different British coins, What	
One pound = ? add 50p. Find the possibilities	-1 - 9 -	4 =	6?4 • <u>24?</u> <u>871</u>	47 Fi pos	= ? + ? ind the sibilities	comb could s	inations he have?	
Come up with your own oddition problem.		AD	DIT nd all the	10	N one sid	way to number	add the s 1-20. 57	
Kerry thinks addition can al multiplication she correct	that so be Is 17	27		square m 4.5mm. 1 the peri 7 + 15		measures What is imeter?	+ <u>47</u> 3y + 2x =	
How many diffe names are then addition?	erent e for	3:2 hours	0pm minu 57 minu	is 9 tes =	How	many ways ike 35 using addition?	can you g just	

• Example 1: Fluency

Fluency:

• Example 1: Reasoning

• Example 1: Problem Solving

Using the digits 1 - 9 only once, find the missing factors in this grid.

• Example 2: Fluency

• Example 2: Reasoning

• Example 2: Problem Solving

Dani says this square is split into quarters. Ryan says that can't be correct. Who do you agree with?

Example 1: Discuss

What are these examples examples of ?

Q1 Solve the following simultaneous equations:

- **a)** 4x + 6y = 16 **d)** x + 2y = 5
 - **b)** 3y 8x = 243y + 2x = 9
 - c) 3y 10x 17 = 0 $\frac{1}{3}y + 2x - 5 = 0$

d) $\frac{x}{2} - 2y = 5$ 12y + x - 2 = 0

e)
$$3x - 4y = 5x - 14$$

 $2y + x = 11y - 26$
e) $3x - 4y = 5x - 14$

(f) 3x + 4y = 105x - 7y = 3 g) 2y - 3x = 1 4x + 5y = 37h) 10x - 7y = -9 8x + 9y = 22i) $\frac{3}{5}x + 2y = 21$ $2x - \frac{2}{3}y = 4$

Example 2: Discuss

Standard or Non-standard

3x + 1 = x + 53x + 2 = x + 64x + 1 = 2x + 56x + 2 = 2x + 10

$$3x + 1 = x$$

 $x + 2 = 3x + 6$
 $2x + 1 = 4x + 5$
 $6x = 2x + 10$

Example 3: Discuss

True or False

 $\frac{4}{9} = \frac{5}{10} \qquad \qquad \frac{6}{8} = \frac{3}{16}$ $\frac{3}{5} = \frac{3}{10} \qquad \qquad \frac{3}{7} = \frac{6}{14}$

Conceptual: Negative variation

Now it's your turn!

- On your tables there is a planning sheet incorporating variation theory into your lessons.
- You need to <u>create</u> an activity that will suuport.
- <u>Think about</u>: How can you adapt it?

Useful sites:

- Increasingly Difficult Questions
- Open Middle
- MathsPad (subscription approx. £50?)
- Jo Morgan (Resourceaholic): Topics in Depth project
- Mathsbot
- Naveen Rizvi blog
- Kris Boulton blog

Additional Online Resources to help to

support:

- Increasingly difficult questions: <u>http://taylorda01.weebly.com/increasingly-difficult-questions.html</u>
- Don Stewart: <u>http://donsteward.blogspot.co.uk/</u>
- The Maths Shed: <u>http://www.mathematicshed.com/the-singapore-maths-shed.html</u>
- NCETM- Secondary: <u>https://www.ncetm.org.uk/files/66633120/secondary_assessment_materi_als_november_2017.pdf</u>
- Jurassic Maths Hub work: <u>http://www.jurassicmaths.com/resources/mastery/variation/</u>
- Gareth Metcalfe (primary school blogger): <u>https://garethmetcalfe.wordpress.com/2014/12/28/mastery-in-</u> <u>mathematics-deep-learning-for-the-able-mathematician/</u>
- Same but different questions: <u>https://ssddproblems.com/</u>
- Variation theory. Com https://variationtheory.com/
- <u>https://nonexamples.com/</u>

Creating Activities / Questions that Promote Depth

Alternative Options/ Ideas

Change into improper fractions:

 ${}^{4}_{9} 5 \frac{1}{3} + {}^{5}_{9} 5 \frac{2}{7} + {}^{6}_{9} 2\frac{1}{2} + {}^{6}_{1} 2\frac{1}{3}$

Challenge: $28\frac{3}{17} = \frac{479}{17}$

Using this information, write the following as improper fractions:

(a) $26\frac{3}{17}$

^{b)} 30

Can you match up the calculations with each of the descriptions?

 $\pi \ge 3.5^2$

Finds the area of a circle with diameter 7cm

 $\pi \ge 4^2$

Finds the

area of a

circle with

radius 7cm

Finds the area of a circle with radius 4cm Finds the area of a circle that fits perfectly inside a 4cm square

> There should be one description left over. Can you write a calculation for it?

 $\pi \ge 7^2$

Dave is unhappy with the answers to Q1 and Q2.

He says:

"Because the radius on Q2 is twice as big as the radius on Q1, our answer for Q2 should be double Q1."

"I can see that the second answer is not double the first answer, so

ething must gone ıg."

Because we are squaring, is lengths double, Areas will x4 (2 squared)

original radius

doubled radius

<u>Potential Task</u>: Solve the following quadratic equations:

$$y^{2} - 14 = 5y$$

 $y(y - 5) = 14$
 $y^{2} + y = 2(3y + 1)$

$$2y^2 - 10y - 28 = 0$$

7)

Probing Questions:

What are the differences? What are the similarities? What do you notice?

Other Examples to demonstrate depth of understanding:

- True/ False
- Fill in the missing blank
- Correct my mistakes
- Prove that.... Why?

1, 2, 3, 4, 6, 7, 9, 0
+8 =
X 5 =

• Represent in a different way...

To summarise:

Features of Mastery

Curriculum design	Longer units of work, prioritising key topics
Lesson design	Carefully structured lesson to develop the detail and depth
Pupil support	Quick intervention
Teaching resources	Carefully chosen examples and activities. Application of variation theory. Effective use of representations
Teaching methods differentiation	Keeping the class together and aiming for depth
Productivity and practice	Intelligent practice 4

